Jacqueline Doan

M.Sc. student in applied mathematics at Western University.

Fun Projects

Computational Art & Design Work

Youtube video about Spectral Theorem (Script writing and animation)


Roberto C. Budzinski, Tung T. Nguyen, Gabriel B. Benigno, Jacqueline Đoàn,  Ján Mináč, Terrence J. Sejnowski, and Lyle Muller. Analytical prediction of specific spatiotemporal patterns in nonlinear oscillator networks with distance-dependent time delays. Physical Review Research, 2023.

Roberto Budzinski, Tung T. Nguyen, Jacqueline Đoàn, Ján Mináč, Terrence J. Sejnowski, and Lyle Muller. A simple geometry unites synchrony, chimeras, and waves in nonlinear oscillator networks. Chaos, 2022.

Jacqueline Đoàn, Lyle Muller, Ján Mináč, Tung T. Nguyen, Federico Pasini. Joins of circulant matrices. Linear Algebra and Its Applications, 2022.

Tung T. Nguyen, Roberto Budzinski, Jacqueline Đoàn, Federico Pasini, Ján Mináč, and Lyle Muller. Equilibria in Kuramoto oscillator networks: An algebraic approach. SIAM Dynamical Systems, 2022.

Jacqueline Đoàn. The Eigenspectra of Random Graphs: A Deterministic Approach via Edge Removal. Undergraduate Honors Thesis, 2021.


Spring 2023 - Introduction to Neural Networks

Fall 2022 - Introduction to Cryptography/ Linear Algebra I

Spring 2022 - Linear Algebra I

Fall 2021 - Linear Algebra I